Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury.
نویسندگان
چکیده
Selective troponin I (TnI) modification has been demonstrated to be in part responsible for the contractile dysfunction observed with myocardial ischemia/reperfusion injury. We have isolated and characterized modified TnI products in isolated rat hearts after 0, 15, or 60 minutes of ischemia followed by 45 minutes of reperfusion using affinity chromatography with cardiac troponin C (TnC) and an anti-TnI antibody, immunological mapping, reversed-phase high-performance liquid chromatography, and mass spectrometry. Rat cardiac TnI becomes progressively degraded from 210 amino acid residues to residues 1-193, 63-193, and 73-193 with increased severity of injury. Degradation is accompanied by formation of covalent complexes between TnI 1-193 and, respectively, TnC residues 1-94 and troponin T (TnT) residues 191-298. The covalent complexes are likely a result of isopeptide bond formation between lysine 193 of TnI and glutamine 191 of TnT by the cross-linking enzyme transglutaminase. With severe ischemia, cellular necrosis results in specific release of TnI 1-193 into the reperfusion effluent and TnT degradation in the myocardium (25-, 27-, and 33-kDa products). Two-dimensional electrophoresis demonstrated that phosphorylation of TnI prevents ischemia-induced degradation. This study characterized the modified TnI products in isolated rat hearts reperfused after a brief or severe period of ischemia, revealing the progressive nature of TnI degradation, changes in phosphorylation, and covalent complexes with ischemia/reperfusion injury. Finally, we propose a model for ischemia/reperfusion injury in which the extent of proteolytic and transglutaminase activities ultimately determines whether apoptosis or necrosis is achieved.
منابع مشابه
Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats
Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...
متن کاملIntracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury.
BACKGROUND Matrix metalloproteinases are best recognized for their ability to degrade the extracellular matrix in both physiological and pathological conditions. However, recent findings indicate that some of them are also involved in mediating acute processes such as platelet aggregation and vascular tone. The acute contractile defect of the heart after ischemia-reperfusion may involve the pro...
متن کاملCardioprotective effect of ethanolic leaf extract of Melissa officinalis L against regional ischemia-induced arrhythmia and heart injury after five days of reperfusion in rats
Abstract Melissa officinalis has antioxidant and anti-inflammatory activities and is used in various diseases. Aim of the study: We investigated the role of M. officinalis extract (MOE) against ischemia-induced arrhythmias and heart injury after five days of reperfusion in an in-vivo rat model of regional heart ischemia. The leaf extract of M. officinalis was standardized thr...
متن کاملCardioprotective effect of ethanolic leaf extract of Melissa officinalis L against regional ischemia-induced arrhythmia and heart injury after five days of reperfusion in rats
Abstract Melissa officinalis has antioxidant and anti-inflammatory activities and is used in various diseases. Aim of the study: We investigated the role of M. officinalis extract (MOE) against ischemia-induced arrhythmias and heart injury after five days of reperfusion in an in-vivo rat model of regional heart ischemia. The leaf extract of M. officinalis was standardized thr...
متن کاملBreakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation.
Our objective in experiments reported here was to identify myofilament proteins of rat hearts either lost or degraded by cardiac ischemia (15- or 60-minute duration) with and without 45 minutes of reperfusion. We correlated these changes with alterations in myofilament sensitivity to Ca2+ and maximum force generation. Protein degradation and loss were assessed by high-performance liquid chromat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 84 1 شماره
صفحات -
تاریخ انتشار 1999